Emerging Pathogenicity of Purpureocillium lilacinum: A Rare Case of Cavitary Lung Disease

ARIHANT SURANA, DO; RIYA BHATTACHARYA, MD; AKSHAT BANGA, MBBS, MD; JAMES TASCH, MD

ABSTRACT

BACKGROUND: Purpureocillium lilacinum is an emerging opportunistic pathogen that can cause a variety of infections, including pulmonary disease, particularly in immunocompromised individuals. Its rare pulmonary involvement presents significant diagnostic challenges due to nonspecific symptoms and imaging findings.

CASE PRESENTATION: We present the case of a 60-yearold male with a history of severe chronic obstructive pulmonary disease (COPD), diabetes mellitus, and smoking, who presented with chronic cough and weight loss. Imaging revealed a cavitary lesion in the left lung apex. Despite initial antibiotic treatment, his symptoms persisted, prompting further investigation. Bronchoscopy and bronchoalveolar lavage (BAL) led to the identification of Purpureocillium lilacinum infection. The patient was treated with oral voriconazole 200 mg twice daily for four weeks, with notable clinical and radiographic improvement.

CONCLUSION: Purpureocillium lilacinum should be considered as a potential cause of cavitary lung disease in patients with persistent respiratory symptoms, particularly those with predisposing factors. Early diagnosis and antifungal therapy, such as voriconazole, are crucial for effective treatment and improved outcomes.

KEYWORDS: Purpureocillium lilacinum; cavitary lung disease; pulmonary infection; voriconazole; opportunistic pathogen

INTRODUCTION

Purpureocillium lilacinum, formerly known as Paecilomyces lilacinus, is a saprobic, hyaline hyphomycete found globally in diverse environments, including soil and decomposing matter.1 While recognized for its role as a biological control agent against nematode pests, it can also act as an opportunistic pathogen.^{1,2} The first reported case of *P. lilac*inum pathogenicity was described in 1977 by Takayasu et al.³ It is being increasingly reported to cause opportunistic infections in immunocompetent and immunocompromised individuals, with clinical manifestations ranging from superficial mycoses to life-threatening systemic infections affecting different organ systems.4 We present the case of a patient with a cavitary lung disease caused by P. lilacinum effectively treated with voriconazole therapy.

CASE PRESENTATION

A 60-year-old male presented to the clinic with a chief complaint of chronic, nonproductive cough and progressive weight loss spanning several months. His past medical history was significant for Chronic Obstructive Pulmonary Disease (COPD), diabetes mellitus, pre-existing pulmonary nodules, bronchiectasis, and hyperlipidemia. His pertinent social history included a significant 86-pack-year smoking history, and his occupational history revealed prior employment as a demolition worker. On physical examination, the patient appeared cachectic, and pulmonary auscultation revealed diffuse coarse breath sounds throughout all lung zones, accompanied by mild expiratory wheezing, consistent with his underlying obstructive lung disease.

Given the persistent respiratory symptoms and the presence of a chronic cough unresponsive to initial conservative measures, a Computed Tomography (CT) of the chest was pursued. CT scan revealed the presence of a distinct cavitary process located within the medial left lung apex along with emphysematous changes [Figure 1]. Given the presence of a cavitary lesion, further investigations were ordered to differentiate between infectious, inflammatory, and neoplastic etiologies.

Initial laboratory investigations revealed that the complete blood count (CBC) and basic metabolic panel (BMP) were unremarkable. Inflammatory markers, including erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP), were also within normal limits. To help exclude

Figure 1. Cavitary lesion in the left upper lobe

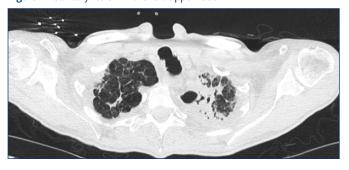
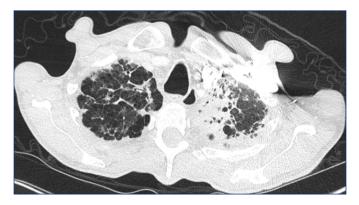



Table 1. Laboratory Investigations

CBC, BMP	Unremarkable
ESR, CRP	Unremarkable
ANCA, ANA,MPO-Ab,PR3-Ab,CCP-Ab, Anti Ro and Anti La Ab	Negative
Rheumatoid Factor	248 (Elevated)
IgA,IgG, IgM	Normal
HIV, Quantiferon, Blood Cultures	Negative

Figure 2. Stabilization and improvement of cavitary process after treatment

autoimmune conditions that can present with cavitary pulmonary manifestations, a comprehensive panel of autoantibodies, including ANCA, ANA, MPO-Ab, PR3-Ab, CCP-Ab, Anti Ro, and Anti La Ab, was performed, all yielding negative results. Notably, the rheumatoid factor (RF) was elevated at 248 IU/mL; however, in the absence of other clinical or serological evidence of rheumatoid arthritis, this finding was considered non-specific in the context of his primary pulmonary complaint. Infectious disease screening was also undertaken, with negative results for HIV, QuantiFERON Gold, and routine blood cultures [Table 1].

Initially, the patient was empirically treated with Augmentin for presumed bacterial cause, particularly given his refusal of initial diagnostic procedures such as sputum samples and bronchoscopy. However, despite this empiric therapy, his symptoms persisted along with worsening clinical status requiring oxygen therapy. Consequently, he consented to undergo bronchoscopy with bronchoalveolar lavage (BAL). The fungal cultures from the bronchoscopy subsequently tested positive for Purpureocillium lilacinum in two different samples, definitively identifying the causative fungal pathogen. Following this result, the patient was initiated on targeted antifungal therapy with oral voriconazole 200 mg twice daily for a duration of four weeks. Subsequent radiographic imaging demonstrated significant improvement in the cavitary lesion [Figure 2], confirming the efficacy of the specific antifungal treatment and the accuracy of the diagnosis.

DISCUSSION

Purpureocillium lilacinum is an increasingly recognized opportunistic pathogen capable of causing a wide spectrum of clinical manifestations in both immunocompromised and immunocompetent individuals. This agent is predominantly known to cause ocular and subcutaneous infections, with pulmonary infections being reported in rare cases.^{2,5}

P. lilacinum is considered to have moderate virulence, but its pathogenicity and dissemination can be heightened by predisposing factors such as immunosuppression (potentially due to depletion of macrophages, neutrophils, interleukin, and nitric oxide synthase in tissues)6 or the presence of implants and foreign materials.7 Common gateways for infection include a breach of the skin barrier via inoculation or inhalation.8

A review of 101 cases with invasive P. lilacinum infection by Sprute et al⁴ suggested that the main predisposing factors were hematological and oncological disease, steroid treatment, solid organ transplant, and diabetes mellitus. The most prevalent sites of infection were consistently the skin followed by the lungs.4 Clinical manifestations of P. lilacinum infection frequently include malaise, fever, cough, pleuritic pain, and dyspnea. Radiographic presentations are varied, encompassing lung nodules, cavitary pulmonary disease, pleural effusion, lung abscess, solitary pulmonary lesions, and lung consolidation.^{4,9}

Diagnosis of P. lilacinum can be challenging because of the similarity in morphology when compared with Aspergillus and other agents of hyalohyphomycosis. 10 Diagnosis is typically confirmed by histological or direct examination of a biopsy coupled with positive fungal cultures.¹¹ On Sabouraud glucose agar, P. lilacinum exhibits rapid growth, forming colonies that are initially white and gradually turn lilac or vinaceous. Microscopic features comprise septate, branching hyaline hyphae, distinguished by phialides tapering towards their distal ends. 12,13 Microscopic observation with Lactophenol cotton blue (LPCB) staining reveals characteristic reproductive structures: the budding of a mother cell gives rise to short septate hyphae that carry phialides, which in turn produce unicellular oblong conidia. This explains the cellular mechanism of the agent's ability to sporulate in infected tissues.^{14,15} Due to the complexity of identifying fungal agents based solely on morphological structures, confirmation of species identification by DNA sequencing or specific Polymerase Chain Reaction (PCR) amplification of the 18S ribosomal ribonucleic acid (18S RNA) is recommended. 11,16 This is particularly important because of observed differences in antifungal sensitivity even between closely related species, such as Purpureocillium variotii and P. lilacinum. 15

Given the limited number of clinical cases, no standard antifungal regimens for P. lilacinum currently exist. By analyzing clinical isolates of infected cases, Sprute et al4 reported Amphotericin B, fluconazole, flucytosine, and itraconazole to have the least active in vitro in susceptibility testing; Posaconazole and voriconazole had the lowest

MIC and Echinocandins showed contrasting data with variable in vitro activity. There are reports that voriconazole has been used to treat P. lilacinum successfully in a wide variety of clinical presentations (including pulmonary involvement) thus being first choice treatment.¹⁷ In the present case, voriconazole 200 mg twice daily for four weeks proved effective in treating the cavitary lung lesion, leading to radiographic and clinical improvement. This case highlights the increasing awareness needed for timely diagnosis and management of *P. lilacinum* as a significant pathogen. ¹⁸

CONCLUSION

P. lilacinum can cause rare pulmonary infections with atypical signs and symptoms, and imaging findings, complicating diagnosis and treatment due to antifungal resistance. In our patient, voriconazole was effective, but further research is needed to determine optimal treatment. Increased awareness of *P. lilacinum* as a significant pathogen is essential for timely diagnosis and management.

References

- 1. Luangsa-Ard J, Houbraken J, van Doorn T, Hong SB, Borman AM, Hywel-Jones NL, Samson RA. Purpureocillium, a new genus for the medically important Paecilomyces lilacinus. FEMS Microbiol Lett. 2011 Aug;321(2):141-9. doi: 10.1111/j.1574-6968.2011.02322.x. Epub 2011 Jun 23. PMID: 21631575.
- Ros-Sánchez E, Oliver-Gutierrez D, Buck P, Goncharova T, Distefano L, Kirkegaard-Biosca E. Purpureocillium lilacinum-related endophthalmitis: case report. J Ophthalmic Inflamm Infect. 2024 Jun 12,14(1):27. doi: 10.1186/s12348-024-00412-2. PMID: 38867117; PMCID: PMC11169429.
- Takayasu S, Akagi M, Shimizu Y. Cutaneous mycosis caused by Paecilomyces lilacinus. Arch Dermatol. 1977 Dec;113(12):1687-
- Sprute R, Salmanton-García J, Sal E, Malaj X, Ráčil Z, Ruiz de Alegría Puig C, Falces-Romero I, Barać A, Desoubeaux G, Kindo AJ, Morris AJ, Pelletier R, Steinmann J, Thompson GR, Cornely OA, Seidel D, Stemler J; FungiScope® ECMM/ISHAM Working Group. Invasive infections with Purpureocillium lilacinum: clinical characteristics and outcome of 101 cases from Fungi-Scope® and the literature. J Antimicrob Chemother. 2021 May 12;76(6):1593-1603. doi: 10.1093/jac/dkab039. PMID: 33599275; PMCID: PMC8120338.
- Khan Z, Ahmad S, Al-Ghimlas F, Al-Mutairi S, Joseph L, Chandy R, Sutton DA, Guarro J. Purpureocillium lilacinum as a cause of cavitary pulmonary disease: a new clinical presentation and observations on atypical morphologic characteristics of the isolate. J Clin Microbiol. 2012 May;50(5):1800-4. doi: 10.1128/ JCM.00150-12. Epub 2012 Feb 8. PMID: 22322350; PMCID: PMC3347118.
- 6. Orth B, Frei R, Itin PH, Rinaldi MG, Speck B, Gratwohl A, Widmer AF. Outbreak of invasive mycoses caused by Paecilomyces lilacinus from a contaminated skin lotion. Ann Intern Med. 1996 Nov 15;125(10):799-806. doi: 10.7326/0003-4819-125-10-199611150-00003. PMID: 8928986
- Castro LG, Salebian A, Sotto MN. Hyalohyphomycosis by Paecilomyces lilacinus in a renal transplant patient and a review of human Paecilomyces species infections. J Med Vet Mycol. 1990;28(1):15-26. PMID: 2194015.
- 8. Pastor FJ, Guarro J. Clinical manifestations, treatment and outcome of Paecilomyces lilacinus infections. Clin Microbiol Infect. 2006 Oct;12(10):948-60. doi: 10.1111/j.1469-0691.2006.01481.x. PMID: 16961630.
- Gutiérrez F, Masiá M, Ramos J, Elía M, Mellado E, CuencaEstrella M. Pulmonary mycetoma caused by an atypical isolate of

- Paecilomyces species in an immunocompetent individual: case report and literature review of Paecilomyces lung infections. Eur J Clin Microbiol & Infect Dis. 2005; 24: 607-611
- 10. Salazar-González MA, Violante-Cumpa JR, Alfaro-Rivera CG, Villanueva-Lozano H, Treviño-Rangel RJ, González GM. Purpureocillium lilacinum as unusual cause of pulmonary infection in immunocompromised hosts. J Infect Dev Ctries. 2020 Apr 30;14(4):415-419. doi: 10.3855/jidc.12235. PMID: 32379722
- 11. Saghrouni F, Saidi W, Ben Said Z, Gheith S, Ben Said M, Ranque S, Denguezli M. Cutaneous hyalohyphomycosis caused by Purpureocillium lilacinum in an immunocompetent patient: case report and review. Med Mycol. 2013 Aug;51(6):664-8. doi: 10.3109/13693786.2012.757656. Epub 2013 Jan 21. PMID:
- 12. Chen WY, Lin SR, Hung SJ. Successful Treatment of Recurrent Cutaneous Purpureocillium lilacinum (Paecilomyces lilacinus) Infection with Posaconazole and Surgical Debridement. Acta Derm Venereol. 2019 Dec 1;99(13):1313-1314. doi: 10.2340/00015555-3320. PMID: 31532536.
- 13. Saberhagen C, Klotz SA, Bartholomew W, Drews D, Dixon A. Infection due to Paecilomyces lilacinus: a challenging clinical identification. Clin Infect Dis. 1997 Dec;25(6):1411-3. doi: 10.1086/516136. PMID: 9431388.
- 14. Hilmarsdóttir I, Thorsteinsson SB, Asmundsson P, Bödvarsson M, Arnadóttir M. Cutaneous infection caused by Paecilomyces lilacinus in a renal transplant patient: treatment with voriconazole. Scand J Infect Dis. 2000;32(3):331-2. doi: 10.1080/00365540050166063. PMID: 10879613.
- 15. Albert R, Lemaignen A, Desoubeaux G, Bailly E, Bernard L, Lacasse M. Chronic subcutaneous infection of Purpureocillium lilacinum in an immunocompromised patient: Case report and review of the literature. Med Mycol Case Rep. 2022 Sep 3;38:5-8. doi: 10.1016/j.mmcr.2022.08.001. PMID: 36147049; PMCID: PMC9486248.
- 16. Trinh SA, Angarone MP. Purpureocillium lilacinum tattoo-related skin infection in a kidney transplant recipient. Transpl Infect Dis. 2017 Jun;19(3):10.1111/tid.12689. doi: 10.1111/tid.12689. Epub 2017 Apr 13. PMID: 28273390; PMCID: PMC5547740.
- 17. Aguilar C, Pujol I, Sala J, Guarro J. Antifungal susceptibilities of Paecilomyces species. Antimicrob Agents Chemother. 1998 Jul;42(7):1601-4. doi: 10.1128/AAC.42.7.1601. PMID: 9660991; PMCID: PMC105653.
- 18. A. Surana, R. Bhattacharya, G. Rana, A. Patel, R. Phadke, and J. Tasch. Emerging Pathogenicity of Purpureocillium Lilacinum: A Case of Cavitary Lung Disease [abstract]. Am J Respir Crit Care Med 2025;211:A6341.

Authors

Arihant Surana, DO, Department of Medicine, Saint Vincent Hospital, Worcester, MA.

Riya Bhattacharya, MD, Department of Medicine, Saint Vincent Hospital, Worcester, MA.

Akshat Banga, MBBS, MD, Department of Internal Medicine, Mount Auburn Hospital, Harvard Medical School, Cambridge, MA.

James Tasch, MD, Department of Pulmonology, Saint Vincent Hospital, Worcester, MA.

Disclosures

Conflicts of interest: The authors have no conflicts of interest

Funding: The author(s) did not receive any funding for this work. **Ethical Approval:** Ethical approval was not required for this case

Consent Approval: Written informed consent was obtained from the patient to publish this report in accordance with the journal's patient consent policy.

Correspondence

Akshat Banga, MBBS, MD bangaakshat1996@gmail.com

