

Bleeding Risk Following Total Shoulder Arthroplasty in Patients Using Selective Serotonin Reuptake Inhibitors

LUCA KATZ, BA; HELEN ZHANG, BS; MANJOT SINGH, MD; JOSUÉ MARQUEZ, BA; EDWARD J. TESTA, MD; ALAN H. DANIELS, MD; MICHEL ARCAND, MD

ABSTRACT

BACKGROUND: The purpose of the current study is to evaluate the association between selective serotonin reuptake inhibitor (SSRI) use and the risk of perioperative bleeding and blood transfusion following total shoulder arthroplasty.

METHODS: The PearlDiver (PearlDiver Technologies, Colorado Springs, CO, USA) Mariner170 database was queried to conduct this retrospective cohort study. Patients were included if they were over 18 years, had anxiety or depression, and underwent primary TSA. Eligible patients were stratified by SSRI use and 1:1 case-control matched by age, gender, Charlson Comorbidity Index (CCI), and relevant comorbidities. Patient demographics and 30-day postoperative outcomes, including bleeding, transfusion, deep venous thrombosis, or pulmonary embolism, were extracted and compared across cohorts.

RESULTS: The SSRI and control groups each contained 3,346 patients who underwent anatomic or reverse TSA. For each group, the mean age was 67.45 ± 7.44 years with 2,410 (72.03%) males and a mean CCI of 1.04 ± 1.07 . There were no significant differences ($p < 0.05$) in the risk of postoperative bleeding, transfusion, deep venous thrombosis, or pulmonary embolism between patients with anxiety and/or depression on SSRIs and those not using SSRIs.

CONCLUSION: The current study determined that there was no increased bleeding or thrombotic risk in patients with anxiety or depression on SSRIs undergoing TSA compared to those not using SSRIs. These findings do not provide support for the alteration of SSRI regimens in the TSA perioperative period due to bleeding or thrombotic risk. However, caution should still be used in patients on SSRIs undergoing TSA.

KEYWORDS: total shoulder arthroplasty; bleeding risk; SSRI; anxiety; depression

INTRODUCTION

Total shoulder arthroplasty (TSA), including both anatomic and reverse techniques, is a procedure that is being performed with increasing incidence across both older and

younger populations.^{1,2} While TSA is widely regarded as a safe and effective intervention for various shoulder pathologies, it carries the risk of bleeding-related complications.³ Increased blood loss and the need for transfusions have been linked to longer hospital stays, dislocations, periprosthetic fractures, mechanical loosening, and periprosthetic joint infections.^{4,5} Furthermore, blood transfusions following TSA have been associated with higher rates of sepsis, pneumonia, myocardial infarction, cerebrovascular accident, and venous thromboembolic events.⁶ However, the studies also suggest that patients requiring transfusion often have a greater pre-operative comorbidity burden, which may partly account for these associations.⁶ Established risk factors for perioperative bleeding complications and transfusions in TSA include a higher Charlson-Deyo Comorbidity Index (CCI), low preoperative hemoglobin, coagulation disorders, and ischemic heart disease, among others.⁷⁻⁹ Additionally, selective serotonin reuptake inhibitors (SSRIs) have been shown to increase the risk of transfusion in patients undergoing total hip (THA) or knee arthroplasty (TKA).¹⁰⁻¹² However, the hematologic effects of SSRIs in the setting of TSA remain poorly understood and underexplored in the existing literature.

SSRIs are among the most commonly prescribed medications nationally and represent the most frequently used class of antidepressants, with usage steadily increasing over the past 30 years.^{13,14} While SSRIs are effective and widely used for a variety of psychiatric conditions, they are not without side effects—most notably, their impact on platelet function. SSRIs exert their antiplatelet effects by depleting serotonin levels within platelet dense granules, thereby impairing primary homeostasis and increasing the risk of bleeding.¹⁵⁻¹⁷ In the orthopaedic setting, perioperative SSRI use has been linked to higher rates of both aseptic and all-cause revision following TSA.¹⁸

Despite SSRIs demonstrating an association with an increased risk of bleeding following both THA and TKA, the effect of SSRIs on the risk of perioperative transfusions and bleeds following TSA has not been previously investigated to our knowledge.¹⁰⁻¹² The purpose of the current study is to evaluate the association between SSRI use and the risk of perioperative bleeding and blood transfusion following TSA. We hypothesized that SSRI use during the perioperative period would be associated with an increased risk of bleeding and/or need for blood transfusion.

METHODS

Study Design

The PearlDiver (PearlDiver Technologies, Colorado Springs, CO, USA) Mariner170 dataset was queried as part of this retrospective cohort study. The Mariner170 dataset contains over 170 million United States (U.S.) patients receiving health coverage under commercial insurance, Medicare, Medicaid, government insurance, and self-pay between 2010 and 2023. Patient records were retrieved using procedural and diagnostic codes from the International Classification of Diseases Ninth (ICD-9) and Tenth (ICD-10) Revision, and Current Procedural Terminology (CPT). Institutional review board approval was waived since the dataset has been de-identified for public access.

Study Population

Adult patients over the age of 18 years with a history of anxiety or depression who underwent primary TSA (CPT-23472) and had 30-day postoperative outcomes data available were included. Patients with a history of coagulation or hemorrhagic disorder, thromboembolic disease, anemia, tumor or metastasis, trauma about the shoulder, or infection of the shoulder joint were excluded.

Data Extraction

Demographic variables included age, gender, Charlson Comorbidity Index (CCI), and history of diabetes, chronic kidney disease (CKD), obesity, hypertension (HTN), coronary artery disease (CAD), congestive heart failure (CHF), rheumatoid arthritis (RA), depression, alcohol use, tobacco use, anemia, coagulopathy, anticoagulant use, coagulation factor use, prothrombotic agent use, and SSRI use were extracted. Postoperative outcomes within the first 30 days of surgery included bleeding, transfusion needs, deep venous thrombosis (DVT), and pulmonary embolism (PE). Medication exposure was identified at the SSRI class level. Although individual agents can be identified within the database, overlapping treatment windows and transitions between antidepressants limit the accuracy of agent-specific classification.

Statistical Analysis

Eligible patients were stratified by SSRI use and case-control matched 1:1 by age, gender, CCI, and history of diabetes, CKD, obesity, HTN, CHF, RA, depression, alcohol use, tobacco use, anemia, coagulopathy, anticoagulant use, coagulation factor use, and prothrombotic agent use. Patient demographics and 30-day postoperative outcomes were compared across cohorts using student's t-tests for continuous variables and chi-square analyses for categorical variables. All analyses were conducted using the built-in R statistical software within PearlDiver, with p-value of <0.05 indicating statistical significance.

RESULTS

Demographics

After matching, a total of 3,340 patients undergoing TSA were included in the study, with 2,630 patients (78.60%) in both the SSRI and control group having a documented history of depression, with the remaining patients having anxiety [Table 1]. The mean age was 67.45 ± 7.44 years with 2,410 (72.03%) males and a mean CCI of 1.04 ± 1.07 were identical between SSRI and control group. [Table 1]

Outcomes

There were no statistically significant differences ($p < 0.05$) in the risk of bleeding, transfusion, deep venous thrombosis, or pulmonary embolism 30 days following TSA between patients with anxiety and/or depression on SSRIs and those not on SSRIs [Table 2].

Table 1. Demographics of patients with anxiety/depression who underwent total shoulder arthroplasty

	SSRI n (%)	Control n (%)	p-value
Age (mean \pm SD)	67.45 ± 7.44	67.45 ± 7.44	1
CCI (mean \pm SD)	1.04 ± 1.07	1.04 ± 1.07	1
Gender	2,410 (72.03)	2,410 (72.03)	1
Diabetes	541 (16.17)	541 (16.17)	1
CKD	41 (1.23)	41 (1.23)	1
Obesity	967 (28.90)	967 (28.90)	1
HTN	2,542 (75.97)	2,542 (75.97)	1
CAD	328 (9.80)	328 (9.80)	1
CHF	16 (0.48)	16 (0.48)	1
RA	65 (1.94)	65 (1.94)	1
Depression	2,630 (78.60)	2,630 (78.60)	1
Alcohol Use	46 (1.37)	46 (1.37)	1
Tobacco Use	755 (22.56)	755 (22.56)	1
Anemia	26 (0.78)	26 (0.78)	1
Coagulopathy	0 (0)	0 (0)	1
Anticoagulation Use	41 (1.23)	41 (1.23)	1
Coagulation Factor	42 (1.23)	42 (1.23)	1
Prothrombotic	0 (0)	0 (0)	1

SSRI = selective serotonin reuptake inhibitor; SD = standard deviation;

SSRI = selective serotonin reuptake inhibitor; CCI = Charlson Comorbidity Index;

CKD = chronic kidney disease; HTN = hypertension; CAD = coronary artery disease; CHF = congestive heart failure

Table 2. Bleeding and thrombotic risk in patients with anxiety or depression within 30 days following total shoulder arthroplasty

	SSRI n (%)	Control n (%)	p-value
Bleeding	7 (0.21)	10 (0.30)	0.627
Transfusion	10 (0.30)	14 (0.42)	0.539
DVT	7 (0.21)	3 (0.09)	0.342
PE	1 (0.03)	2 (0.06)	1

SSRI = selective serotonin reuptake inhibitor; DVT = deep vein thrombosis;

PE = pulmonary embolism

DISCUSSION

The purpose of the present study was to evaluate the impact of SSRIs on the risk of perioperative bleeding and transfusions following TSA. Contrary to our initial hypothesis, the findings of this study did not demonstrate a significant increase in bleeding-related complications among patients with anxiety and/or depression on SSRIs undergoing TSA. Given the widespread and increasing use of SSRIs,^{13,14} along with the rising incidence of TSA procedures,^{1,2} it is important to understand the potential implications of SSRI use in the surgical context. The present findings contrast with prior studies that reported increasing bleeding risk associated with SSRIs in THA and TKA.¹⁰⁻¹² Thus, the current study does not provide support for the alteration of SSRI regimens in the TSA perioperative period due to bleeding or thrombotic risk. However, caution should still be used for patients undergoing TSA who are using SSRIs in the perioperative period.

Understanding whether SSRI use increases perioperative bleeding risk is important for guiding medication management in a growing surgical population with high rates of mental health comorbidity. SSRIs have been linked to impaired platelet aggregation by decreasing serotonin content in platelet dense granules,¹⁵⁻¹⁷ which may account for increased bleeding risk reported in TKA and THA.¹⁰⁻¹² Bismuth-Evanzal et al demonstrated that in a clinical setting, SSRIs depleted platelet serotonin stores and reduced aggregation in response to ADT, collagen, and epinephrine.¹⁵ Additionally, in-vitro studies have demonstrated that sertraline and its inactive metabolite, N-desmethylsertraline, inhibit platelet aggregation and down regulate surface markers of activation.¹⁷ However, these effects did not translate into increased bleeding or transfusion requirements in our TSA cohort. These differences may reflect a gap between in-vitro models and differing clinical settings, where compensatory mechanisms and surgical factors influence outcomes. This discrepancy may also be due to anatomical and procedural differences between lower extremity arthroplasty and TSA. Additionally, although antiplatelet agents have been associated with increased blood loss in TSA,¹⁹ this increase is not clinically significant and rarely necessitates transfusions.^{19,20} It is possible that SSRIs exert a similar mild antiplatelet effect that does not result in significant clinical consequences in TSA.

Although thrombotic events following TSA are uncommon, certain patients—such as those with prolonged operative times, elevated BMI, or older age—are at increased risk.^{19,20} Therefore, individualized risk stratification for potential venous thromboembolism (VTE) prophylaxis remains critical.²¹ Given the role of SSRIs in modulating platelet function, their potential effect on thrombotic risk also warrants consideration. Prior work by Bruun et al did not find a significant difference in the rate of VTE between SSRI and non-SSRI patients who underwent operative repair

of hip fractures.²² In alignment with these findings, the current results did not demonstrate a significant difference in VTE rates post-TSA between SSRI and non-SSRI users. This mirrors findings with other antiplatelet medications, such as aspirin and clopidogrel, which also do not increase VTE risk after TSA.²³

Limitations

The most significant limiting factor of this study is that the data source was an administrative claims database. This introduces potential inaccuracies due to coding variability in ICD or CPT codes, upon which the analysis relied. In addition, the data source lacked clinical granularity and patient-level details. Prior studies have reported variability in bleeding risk among specific SSRIs.^{24,25} However, specific SSRI, dosage, treatment duration, and overlap between agents were not assessed in the present study. Important perioperative variables such as operative times, known to influence bleeding and VTE risk,^{20,21,26} could not be measured. Additionally, estimated blood loss was also unavailable, as were patient-specific risk factors such as prolonged immobility or bed confinement.²⁷ These limitations reduce the ability to control for potential confounders.

CONCLUSION

The current study determined that there was no increased bleeding or thrombotic risk in patients with anxiety or depression on SSRIs undergoing TSA compared to those not using SSRIs. These findings do not provide support for the alteration of SSRI regimens in the TSA perioperative period due to bleeding or thrombotic risk. However, caution should still be used in patients on SSRIs undergoing TSA.

References

1. Best MJ, Aziz KT, Wilckens JH, McFarland EG, Srikumaran U. Increasing incidence of primary reverse and anatomic total shoulder arthroplasty in the United States. *J Shoulder Elbow Surg.* 2021;30(5):1159-1166. doi:10.1016/j.jse.2020.08.010
2. Mandalia K, Efremov K, Charubhumi V, et al. Incidence of primary anatomic and reverse total shoulder arthroplasty in patients less than 50 years of age and high early revision risk. *J Shoulder Elbow Surg.* 2023;32(9):1901-1908. doi:10.1016/j.jse.2023.01.040
3. Ryan DJ, Yoshihara H, Yoneoka D, Zuckerman JD. Blood transfusion in primary total shoulder arthroplasty: incidence, trends, and risk factors in the United States from 2000 to 2009. *J Shoulder Elbow Surg.* 2015;24(5):760-765. doi:10.1016/j.jse.2014.12.016
4. Menendez ME, Lawler SM, Carducci MP, Ring D, Mahendraraj KA, Jawa A. Delayed hospital discharge after total shoulder arthroplasty: why, and who is at risk? *JSES Open Access.* 2019;3(3):130-135. doi:10.1016/j.jses.2019.07.011
5. Incidence and risk factors of in-hospital prosthesis-related complications following total shoulder arthroplasty-Huishan Lu, Enyou Jin, Hao Xie, Jinlang Fu, Xianhui Chen, Wenqian Liu, Qinfeng Yang, Fang Yu, 2023. Accessed June 18, 2024. <https://journals-sagepub-com.revproxy.brown.edu/doi/10.1177/10225536231214055>

6. Grier AJ, Bala A, Penrose CT, Seyler TM, Bolognesi MP, Garrigues GE. *J Shoulder Elbow Surg.* 2017;26(7):1203-1209. doi:10.1016/j.jse.2016.11.039
7. Kandil A, Griffin JW, Novicoff WM, Brockmeier SF. Blood transfusion after total shoulder arthroplasty: Which patients are at high risk? *Int J Shoulder Surg.* 2016;10(2):72-77. doi:10.4103/0973-6042.180719
8. Hardy JC, Hung M, Snow BJ, et al. Blood transfusion associated with shoulder arthroplasty. *J Shoulder Elbow Surg.* 2013;22(2):233-239. doi:10.1016/j.jse.2012.04.013
9. Sperling JW, Duncan S FM, Cofield RH, Schleck CD, Harmsen WS. Incidence and risk factors for blood transfusion in shoulder arthroplasty. *J Shoulder Elbow Surg.* 2005;14(6):599-601. doi:10.1016/j.jse.2005.03.006
10. Belay ES, Penrose CT, Ryan SP, Bergen MA, Bolognesi MP, Seyler TM. Perioperative Selective Serotonin Reuptake Inhibitor Use Is Associated With an Increased Risk of Transfusion in Total Hip and Knee Arthroplasty. *J Arthroplasty.* 2019;34(12):2898-2902. doi:10.1016/j.arth.2019.04.057
11. Bourget-Murray J, Parkar A, Railton P, Evaniew N, Powell J. Effects of Perioperative Selective Serotonin Reuptake Inhibitor Use in Primary Total Hip and Knee Arthroplasty. *J Arthroplasty.* 2022;37(3):454-459. doi:10.1016/j.arth.2021.11.013
12. Gylvin SH, Jørgensen CC, Fink-Jensen A, Johansson PI, Kehlet H, on behalf of the Lundbeck Foundation Centre for Fast-track Hip and Knee Replacement Collaborative Group. Psychopharmacologic treatment and blood transfusion in fast-track total hip and knee arthroplasty. *Transfusion (Paris).* 2017;57(4):971-976. doi:10.1111/trf.13992
13. Bogowicz P, Curtis HJ, Walker AJ, Cowen P, Geddes J, Goldacre B. Trends and variation in antidepressant prescribing in English primary care: a retrospective longitudinal study. *BJGP Open.* 5(4):BJGPO.2021.0020. doi:10.3399/BJGPO.2021.0020
14. Pratt LA. Antidepressant Use in Persons Aged 12 and Over: United States, 2005–2008. 2011;761.
15. Bismuth-Evenzal Y, Gonopolsky Y, Gurwitz D, Iancu I, Weizman A, Rehavi M. Decreased serotonin content and reduced agonist-induced aggregation in platelets of patients chronically medicated with SSRI drugs. *J Affect Disord.* 2012;136(1):99-103. doi:10.1016/j.jad.2011.08.013
16. de Abajo FJ. Effects of Selective Serotonin Reuptake Inhibitors on Platelet Function. *Drugs Aging.* 2011;28(5):345-367. doi:10.2165/11589340-00000000-00000
17. Serebruany VL, Gurbel PA, O'Connor CM. Platelet Inhibition by Sertraline and N-Desmethylsertraline: A Possible Missing Link Between Depression, Coronary Events, and Mortality Benefits of Selective Serotonin Reuptake Inhibitors. *Pharmacol Res.* 2001;43(5):453-461. doi:10.1006/phrs.2001.0817
18. Cole MW, Waters TL, Collins LK, et al. How do the top 10 known offending drug classes associated with decreased bone mineral density affect total shoulder arthroplasty outcomes? *J Shoulder Elbow Surg.* 2023;32(5):1009-1015. doi:10.1016/j.jse.2022.11.006
19. Zhang D, Dyer GSM, Earp BE. Venous Thromboembolism After Total Shoulder Arthroplasty: A Database Study of 31,918 Cases. *JAAOS - J Am Acad Orthop Surg.* 2022;30(19):949. doi:10.5435/JAAOS-D-22-00352
20. Na SS, Kim DH, Choi BC, Cho CH. Incidence, characteristics, and risk factors of venous thromboembolism in shoulder arthroplasty—a systematic review. *Int Orthop.* 2022;46(9):2081-2088. doi:10.1007/s00264-022-05496-w
21. Kolz JM, Aibinder WR, Adams RA, Cofield RH, Sperling JW. Symptomatic Thromboembolic Complications After Shoulder Arthroplasty: An Update. *JBJS.* 2019;101(20):1845. doi:10.2106/JBJS.18.01200
22. Bruun SB, Petersen I, Kristensen NR, Cronin-Fenton D, Pedersen AB. Selective serotonin reuptake inhibitor use and mortality, postoperative complications, and quality of care in hip fracture patients: a Danish nationwide cohort study. *Clin Epidemiol.* 2018;10:1053-1071. doi:10.2147/CLEP.S166309
23. Kirsch JM, Gutman M, Patel M, et al. Low-dose aspirin and the rate of symptomatic venous thromboembolic complications following primary shoulder arthroplasty. *J Shoulder Elbow Surg.* 2021;30(7):1613-1618. doi:10.1016/j.jse.2020.09.030
24. Li Y-H, Hang L-W, Muo C-H, Chen S-J, Chen P-C. Dose of selective serotonin reuptake inhibitors and risk of upper gastrointestinal bleeding in older adults. *Journal of Psychopharmacology.* 2023;38(2):137-144. doi:10.1177/02698811231218955
25. Goyal J, Ng DQ, Zhang K, et al. Using machine learning to develop a clinical prediction model for SSRI-associated bleeding: a feasibility study. *BMC Med Inform Decis Mak.* 23, 105 (2023). <https://doi.org/10.1186/s12911-023-02206-3>
26. Anthony CA, Westermann RW, Gao Y, Pugely AJ, Wolf BR, Hettrich CM. What Are Risk Factors for 30-day Morbidity and Transfusion in Total Shoulder Arthroplasty? A Review of 1922 Cases. *Clin Orthop.* 2015;473(6):2099-2105. doi:10.1007/s11999-014-4107-7
27. Saleh HE, Pennings AL, ElMaraghy AW. Venous thromboembolism after shoulder arthroplasty: a systematic review. *J Shoulder Elbow Surg.* 2013;22(10):1440-1448. doi:10.1016/j.jse.2013.05.013

Authors

Luca Katz, BA, The Warren Alpert Medical School of Brown University, Providence, Rhode Island.

Helen Zhang, BS, The Warren Alpert Medical School of Brown University, Providence, Rhode Island.

Manjot Singh, MD, Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, New York.

Josué Marquez, BA, The Warren Alpert Medical School of Brown University, Providence, Rhode Island.

Edward J. Testa, MD, OrthoCarolina, Charlotte, North Carolina.

Alan H. Daniels, MD, Department of Orthopaedic Surgery, The Warren Alpert Medical School of Brown University, Providence, Rhode Island.

Michel Arcand, MD, Department of Orthopaedic Surgery, The Warren Alpert Medical School of Brown University, Providence, Rhode Island.

Disclosures

A.H.D. discloses the following: receives royalties from Spineart and Stryker, consulting fees from Medtronic, research support from Alphatec, Medtronic, and Orthofix, and fellowship support from Medtronic. The remaining authors report no conflicts of interest. This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Acknowledgments: none

Statements and declarations: none

Ethical approval: The current study did not require IRB approval nor Patient/Guardian consent because it was a retrospective cohort analysis of the PearlDiver database. PearlDiver is a national, Health Insurance Portability and Accountability Act (HIPAA)-compliant database that provides longitudinal data by utilizing administrative claims from multiple payers.

Correspondence

Luca Katz
222 Richmond Street
Providence, RI 02903
248-933-5590
luca_katz@brown.edu